direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C22×Q16, C4.3C24, C8.12C23, C23.62D4, Q8.1C23, (C2×C4).89D4, C4.18(C2×D4), (C2×C8).85C22, (C22×C8).10C2, C2.25(C22×D4), C22.66(C2×D4), (C22×Q8).9C2, (C2×C4).137C23, (C2×Q8).68C22, (C22×C4).131C22, SmallGroup(64,252)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22×Q16
G = < a,b,c,d | a2=b2=c8=1, d2=c4, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 169 in 129 conjugacy classes, 89 normal (7 characteristic)
C1, C2, C2, C4, C4, C4, C22, C8, C2×C4, C2×C4, Q8, Q8, C23, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C2×Q8, C22×C8, C2×Q16, C22×Q8, C22×Q16
Quotients: C1, C2, C22, D4, C23, Q16, C2×D4, C24, C2×Q16, C22×D4, C22×Q16
Character table of C22×Q16
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ10 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ12 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ13 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ14 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ20 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ21 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | √2 | √2 | -√2 | -√2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ22 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | √2 | -√2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ23 | 2 | -2 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | -√2 | √2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ24 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | -√2 | -√2 | √2 | √2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ25 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | √2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | -√2 | -√2 | -√2 | -√2 | √2 | √2 | symplectic lifted from Q16, Schur index 2 |
ρ27 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | √2 | √2 | √2 | √2 | -√2 | -√2 | symplectic lifted from Q16, Schur index 2 |
ρ28 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | -√2 | √2 | symplectic lifted from Q16, Schur index 2 |
(1 50)(2 51)(3 52)(4 53)(5 54)(6 55)(7 56)(8 49)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 60)(18 61)(19 62)(20 63)(21 64)(22 57)(23 58)(24 59)(33 44)(34 45)(35 46)(36 47)(37 48)(38 41)(39 42)(40 43)
(1 59)(2 60)(3 61)(4 62)(5 63)(6 64)(7 57)(8 58)(9 34)(10 35)(11 36)(12 37)(13 38)(14 39)(15 40)(16 33)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 49)(24 50)(25 44)(26 45)(27 46)(28 47)(29 48)(30 41)(31 42)(32 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 40 5 36)(2 39 6 35)(3 38 7 34)(4 37 8 33)(9 61 13 57)(10 60 14 64)(11 59 15 63)(12 58 16 62)(17 31 21 27)(18 30 22 26)(19 29 23 25)(20 28 24 32)(41 56 45 52)(42 55 46 51)(43 54 47 50)(44 53 48 49)
G:=sub<Sym(64)| (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,49)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,57)(8,58)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(25,44)(26,45)(27,46)(28,47)(29,48)(30,41)(31,42)(32,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,5,36)(2,39,6,35)(3,38,7,34)(4,37,8,33)(9,61,13,57)(10,60,14,64)(11,59,15,63)(12,58,16,62)(17,31,21,27)(18,30,22,26)(19,29,23,25)(20,28,24,32)(41,56,45,52)(42,55,46,51)(43,54,47,50)(44,53,48,49)>;
G:=Group( (1,50)(2,51)(3,52)(4,53)(5,54)(6,55)(7,56)(8,49)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,60)(18,61)(19,62)(20,63)(21,64)(22,57)(23,58)(24,59)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,57)(8,58)(9,34)(10,35)(11,36)(12,37)(13,38)(14,39)(15,40)(16,33)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,49)(24,50)(25,44)(26,45)(27,46)(28,47)(29,48)(30,41)(31,42)(32,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,40,5,36)(2,39,6,35)(3,38,7,34)(4,37,8,33)(9,61,13,57)(10,60,14,64)(11,59,15,63)(12,58,16,62)(17,31,21,27)(18,30,22,26)(19,29,23,25)(20,28,24,32)(41,56,45,52)(42,55,46,51)(43,54,47,50)(44,53,48,49) );
G=PermutationGroup([[(1,50),(2,51),(3,52),(4,53),(5,54),(6,55),(7,56),(8,49),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,60),(18,61),(19,62),(20,63),(21,64),(22,57),(23,58),(24,59),(33,44),(34,45),(35,46),(36,47),(37,48),(38,41),(39,42),(40,43)], [(1,59),(2,60),(3,61),(4,62),(5,63),(6,64),(7,57),(8,58),(9,34),(10,35),(11,36),(12,37),(13,38),(14,39),(15,40),(16,33),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,49),(24,50),(25,44),(26,45),(27,46),(28,47),(29,48),(30,41),(31,42),(32,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,40,5,36),(2,39,6,35),(3,38,7,34),(4,37,8,33),(9,61,13,57),(10,60,14,64),(11,59,15,63),(12,58,16,62),(17,31,21,27),(18,30,22,26),(19,29,23,25),(20,28,24,32),(41,56,45,52),(42,55,46,51),(43,54,47,50),(44,53,48,49)]])
C22×Q16 is a maximal subgroup of
(C2×C4)⋊9Q16 (C2×C4)⋊6Q16 (C2×Q16)⋊10C4 M4(2).33D4 C23⋊2Q16 (C2×C8).41D4 (C2×C4)⋊2Q16 M4(2).6D4 C4⋊C4.98D4 (C2×C4)⋊3Q16 C23.41D8 Q16⋊7D4 Q16.8D4 C42.279C23 Q8.(C2×D4) C42.17C23 C8.D4⋊C2 M4(2).20D4 Q16⋊9D4 Q16⋊12D4
C22×Q16 is a maximal quotient of
C42.224D4 C42.367D4 C23⋊3Q16 C42.267D4 C42.282D4 C42.297D4 D4⋊5Q16 D4⋊6Q16 Q8⋊5Q16 Q8⋊6Q16
Matrix representation of C22×Q16 ►in GL6(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 14 | 3 |
0 | 0 | 0 | 0 | 14 | 14 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
0 | 0 | 0 | 0 | 13 | 0 |
G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,14,14,0,0,0,0,3,14],[16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,13,0,0,0,0,13,0] >;
C22×Q16 in GAP, Magma, Sage, TeX
C_2^2\times Q_{16}
% in TeX
G:=Group("C2^2xQ16");
// GroupNames label
G:=SmallGroup(64,252);
// by ID
G=gap.SmallGroup(64,252);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,-2,192,217,199,1444,730,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=1,d^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export